Electron energy loss spectrum of graphane from first-principles calculations.
نویسندگان
چکیده
In this study, the energy loss near edge structure (ELNES) of carbon atoms in chair and tricycle conformers of hydrogenated graphene, namely 'graphane', has been calculated in the density functional theory using FP-LAPW method, and then, it has been compared with that of graphite and graphene. Using ELNES from chair conformer, the carbon K-edge was found to have a few main features including electron transition from 1s orbital of carbon atom to π*, σ*, and a hybridization of these two states. The first feature in tricycle conformer, however, has contributions of both π* and σ* states. The comparison of ELNES and the unoccupied density of states in each structure also justifies this. The energy difference between π* and σ* features of graphane conformers was decreased relative to it in graphite and graphene. Since the inclusion of core-holes and super-cells is essential for accurate reproduction of features in graphite and graphene, it may be essential as well for the ELNES spectra of graphane conformers.
منابع مشابه
First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor.
We predict by first-principles calculations that p-doped graphane is an electron-phonon superconductor with a critical temperature above the boiling point of liquid nitrogen. The unique strength of the chemical bonds between carbon atoms and the large density of electronic states at the Fermi energy arising from the reduced dimensionality give rise to a giant Kohn anomaly in the optical phonon ...
متن کاملFirst-Principles Study of Structure, Electronic and Optical Properties of HgSe in Zinc Blende (B3) Phase
In this paper, the structural parameters, energy bands structure, density ofstates and charge density of HgSe in the Zincblende(B3) phase have been investigated.The calculations have been performed using the Pseudopotential method in theframework of density functional theory (DFT) by Quantum Espresso package. Theresults for the electronic density of states (DOS) show tha...
متن کاملHybrid platforms of graphane-graphene 2D structures: prototypes for atomically precise nanoelectronics.
First-principles calculations demonstrate that line/ribbon defects, resulting from a controlled dehydrogenation in graphane, lead to the formation of low-dimensional electron-rich tracks in a monolayer. The present simulations point out that hybrid graphane-graphene nanostructures exhibit important elements, greatly required for the fabrication of efficient electronic circuits at the atomic level.
متن کاملCarbon K edge structures of molecular crystals from first-principles: A comparison between phenanthrene and anthracene
By means of ab-initio calculations on the basis of the FPLAPW method, we compared the energy loss near edge structure (ELNES) of carbon K edges in crystalline phenanthrene and its isomer, anthracene. In these two organic compounds, different non-equivalent carbon atoms can result in distinct K edge spectra due to the different carbon-carbon bond lengths, as a characteristic behavior of the mole...
متن کاملFacile abstraction of hydrogen atoms from graphane, diamond, and amorphous carbon surfaces: A first-principles study
ion of surface hydrogen by atomic H from graphane, diamond 001 , diamond 111 , and hydrogenated amorphous carbon a-C:H surfaces was studied using density-functional theory calculations in the generalized gradient approximation. Our calculations show that for each surface, the abstraction reaction is highly exothermic with a negligible activation energy barrier. The degree of exothermicity depen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micron
دوره 67 شماره
صفحات -
تاریخ انتشار 2014